Proteins P24 and P41 function in the regulation of terminal-organelle development and gliding motility in Mycoplasma pneumoniae.

نویسندگان

  • Benjamin M Hasselbring
  • Duncan C Krause
چکیده

Mycoplasma pneumoniae is a major cause of bronchitis and atypical pneumonia in humans. This cell wall-less bacterium has a complex terminal organelle that functions in cytadherence and gliding motility. The gliding mechanism is unknown but is coordinated with terminal-organelle development during cell division. Disruption of M. pneumoniae open reading frame MPN311 results in loss of protein P41 and downstream gene product P24. P41 localizes to the base of the terminal organelle and is required to anchor the terminal organelle to the cell body, but during cell division, MPN311 insertion mutants also fail to properly regulate nascent terminal-organelle development spatially or gliding activity temporally. We measured gliding velocity and frequency and used fluorescent protein fusions and time-lapse imaging to assess the roles of P41 and P24 individually in terminal-organelle development and gliding function. P41 was necessary for normal gliding velocity and proper spatial positioning of new terminal organelles, while P24 was required for gliding frequency and new terminal-organelle formation at wild-type rates. However, P41 was essential for P24 function, and in the absence of P41, P24 exhibited a dynamic localization pattern. Finally, protein P28 requires P41 for stability, but analysis of a P28(-) mutant established that the MPN311 mutant phenotype was not a function of loss of P28.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of fluorescent-protein tagging to determine the subcellular localization of mycoplasma pneumoniae proteins encoded by the cytadherence regulatory locus.

Mycoplasma pneumoniae lacks a cell wall but has internal cytoskeleton-like structures that are assumed to support the attachment organelle and asymmetric cell shape of this bacterium. To explore the fine details of the attachment organelle and the cytoskeleton-like structures, a fluorescent-protein tagging technique was applied to visualize the protein components of these structures. The focus ...

متن کامل

P65 truncation impacts P30 dynamics during Mycoplasma pneumoniae gliding.

The cell wall-less prokaryote Mycoplasma pneumoniae is a major cause of community-acquired bronchitis and pneumonia in humans. Colonization is mediated largely by a differentiated terminal organelle, which is also the leading end in gliding motility. Cytadherence-associated proteins P30 and P65 appear to traffic concurrently to the distal end of developing terminal organelles. Here, truncation ...

متن کامل

Domain analysis of protein P30 in Mycoplasma pneumoniae cytadherence and gliding motility.

The cell wall-less prokaryote Mycoplasma pneumoniae causes bronchitis and atypical pneumonia in humans. Mycoplasma attachment and gliding motility are required for colonization of the respiratory epithelium and are mediated largely by a differentiated terminal organelle. P30 is a membrane protein at the distal end of the terminal organelle and is required for cytadherence and gliding motility, ...

متن کامل

Terminal organelle development in the cell wall-less bacterium Mycoplasma pneumoniae.

Mycoplasmas are cell wall-less bacteria considered among the smallest and simplest prokaryotes known, and yet several species including Mycoplasma pneumoniae have a remarkably complex cellular organization highlighted by the presence of a differentiated terminal organelle, a membrane-bound cell extension distinguished by an electron-dense core. Adhesin proteins localize specifically to the term...

متن کامل

Mutant analysis reveals a specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility.

The cell-wall-less prokaryote Mycoplasma pneumoniae, long considered among the smallest and simplest cells capable of self-replication, has a distinct cellular polarity characterized by the presence of a differentiated terminal organelle which functions in adherence to human respiratory epithelium, gliding motility, and cell division. Characterization of hemadsorption (HA)-negative mutants has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 20  شماره 

صفحات  -

تاریخ انتشار 2007